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TECHNICAL MEMORANDUM

STATISTICALLY GENERATED WEIGHTED CURVE FIT OF RESIDUAL FUNCTIONS

FOR MODAL ANALYSIS OF STRUCTURES

I. INTRODUCTION

In industry, the use of analytical tools to aid in design and analysis of a product is greatly increas-

ing. The type of tools vary depending on the type of analysis and application of the final product. In

recent years, the method of finite element analysis (FEA), which is a mathematical representation, has

become an industry-wide accepted tool. FEA, which is a reduction of an infinite system to a finite one, is

an approximation of the actual system. FEA can be applied to a variety of problems, such as stress
analysis, thermal analysis, fluid flow, dynamics, etc.

In the area of dynamics, an FEA can be used to determine the natural frequencies and mode
shapes of a structural model. If the frequency of a forcing function is the same as one of the structure's

natural frequencies, the dynamic characteristics of the structure can produce increased elastic deforma-
tion of the structure's material, causing fatigue, resulting in the destruction of the structure. Since the

FEA only approximates the dynamic characteristics of the structure, it is important to eliminate any
additional error that may be incorporated into the mathematical model.

Errors arise in two areas: the modeling of the structure (creating the finite element model (FEM))

and fabricating the structure. When creating the FEM, simplifying assumptions lead to errors. In the

fabrication of the structure, exact reproduction of the design drawings is impossible. Variations in thick-

nesses of machined parts and limits on tolerances can change the final characteristics of the structure.
The process of eliminating the errors in a mathematical model is known as correlation. Correlation

involves modifying the model to match the results obtained from testing the physical structure.

Once a mathematical model has been correlated, it can be used to predict, with increased confi-

dence, the response of the structure under expected loadings. How a structure will behave in its opera-
tional environment is of great importance. The structure interacts with the environment at its interface

points. In structural dynamics, the interface points are where the object receives its excitation and

transmits its vibrational loads back to the environment. The interface points are areas where a high level
of confidence in the mathematical model representation is critical.

Dynamically correlating a mathematical model with test results requires a modal test of the
physical structure. The type of modal testing performed depends on the structure and the type of inter-

facing the structure has with its environment. The two most commonly performed modal tests are the

free-free and fixed-base tests. For structures with constrained (fixed) interfaces, historically the fixed-

base modal test was performed. Fixed-base testing has many drawbacks for large structures such as

interface simulation and cost. Extreme difficulties arise when trying to simulate the interfaces between
the structure and its environment when only selected degrees of freedom (DOF) are to be constrained.

The cost involved in design and construction of a test stand can become prohibitive.

As stated previously, fixed-base tests of large structures are extremely difficult and expensive.

As an example, the Boeing Company in Huntsville, AL, designed and built a large test stand to perform

modal tests on the space station modules in a fixed-base configuration (fig. 1). Extreme care was taken
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in the design of the test stand to keep the dynamic characteristics of the stand from corrupting the test

data. A fixed-base modal test of the space station common module prototype (SSCMP), built by Boeing

for preliminary testing, was conducted in the test stand for test stand checkout (fig. 2). The module has

seven DOF where it interfaces with its environment. An elaborate off-loading system, which utilized air

bags to lift the trunnions off the lower beating surface to reduce the contact friction, was used to allow
movement in the remaining DOF at the interface points.

The fixed-base modal test of the SSCMP failed. The off-loading system did not free the remain-

ing DOF at the interface locations. Boeing is presently redesigning the areas around the interface points
of the test stand. Over a million dollars has already been spent on the test stand and its design. It can

easily be seen why an alternative modal testing technique is greatly needed.

Due to simulation problems and economic pressures, alternative modal testing methods are being

considered. Mass additive and residual flexibility testing methods are two such methods. The mass

additive method involves the attachment of masses to the interface DOF which helps to exercise the

interface modes, aiding in constrained modes prediction (fig. 3). References 1, 2, and 3 discuss the

implementation of the method along with its advantages and disadvantages.

The residual flexibility modal testing method consists of measuring the free-free natural fre-

quencies and mode shapes along with the interface frequency response functions (FRF's). Analytically,

the residual flexibility method has been investigated in detail, 4-6 but has not been implemented exten-

sively for model correlation due to difficulties in data acquisition. In recent years, improvement of data

acquisition equipment has made possible the implementation of the residual flexibility method. 7-11 The

residual flexibility modal testing technique is applicable to a structure with distinct points (DOF) of con-
tact with its environment. Examples are shown in figure 4.

Payloads of the space shuttle are structures that have distinct interface points at its support trun-
nions and are prime candidates for the residual flexibility modal test method (fig. 5). Since the

Challenger shuttle incident in 1986, NASA requires that all final loads analysis of the payload be

performed with a mathematical model that has been correlated to modal test data. A load analysis
consists of coupling the payload's mathematical model to a space shuttle mathematical model,

dynamically exciting it analytically, and evaluating the response loads the payload exerts on the shuttle

during takeoff, on orbit, and landing configurations. Usually the mode shapes that produce the highest

value in a load analysis are the modes that excite the bending of the trunnions and exercise their local

stiffness. Johnson Space Center (JSC), which is responsible for the shuttle fleet, requires the

mathematical model to be correlated, up to 35 Hz, to a modal test data of a fixed-base configuration. A

fixed-base configuration involves rigidly constraining the interface DOF. JSC requires this configuration
because the exact interface point characteristics on the shuttle are unknown. These characteristics also

change when different payloads are placed in the cargo bay. JSC also chose the fixed-base test since the

corresponding modes are required in a loads analysis.

If the payload was tested in a free-free configuration, the bending stiffness of the trunnions

would not be measured (trunnion natural frequencies are usually greater than 150 Hz). Measuring the

free-free bending stiffness of the trunnions in a free-free modal test and correlating the mathematical

model are not sufficient to predict constrained modes. 7 In addition to measuring the bending stiffness of

the trunnions, the residual flexibility modal testing method also measures the contributions of the higher
order modes.

The study of the implementation and analysis usability of the residual flexibility modal test

technique is being conducted at the NASA/Marshall Space Flight Center (MSFC) in Huntsville, AL.
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A researchtaskentitled"ResidualFlexibility In-HouseImplementationStudy"is beingconductedby
theDynamicsandLoadsBranchandtheExperimentalDynamicsTestBranchat MSFC.During this
study,a problemwasencounteredwhentrying to extracttheresidualflexibility from thetestdata.

This reportdiscussesthedevelopmentof astatisticallygeneratedweightedcurvefit for assisting
in theanalysisof theresidualflexibility testdata.First,a brief analyticaldiscussionis presented,fol-
lowedby anexplanationof thegenerationof theresidualfunctionfrom testdata,andtheimplementa-
tionof thestatisticallygeneratedweightedcurvefit to extracttheresidualterms.Theresidualflexibility
methodis thenappliedto a simplebeamwith atrunniontypeinterfaceandaspaceshuttlepalletsimula-
tor.Theresidualtermsarethencomparedto amathematicalmodeltakenastheexactanswerandper-
centageerrorsarepresented.

II. RESIDUAL FLEXIBILITY ANALYTICAL APPROACH

The residual technique, which was first developed by MacNeal, 5 incorporates the use of the

higher frequency mode effects (residual modes) which are not directly used in the analysis to improve

the reduced mathematical model. MacNeal derives statically the deflection influence coefficient matrix,
G, associated with the free coordinates, Gcc, and the redundant support coordinates, Gss, for the deter-

minate restrained DOF, which is given by

G = [ Gcc Gcs] (1)GcT Gss '

where Gcs is the coupling of the redundant support and free coordinates.

MacNeal further defines the deflection influence coefficient matrix with all boundary DOF

restrained as.

Gcc -1 T= Gcc-GcsGss Gcs (2)

Next, casting the modal representation in a manner similar to the deflection influence coefficient matrix,

equation (1), gives,

(3)G cm -1 T= dPci-K i dPci ,

where the dPci term contains the eigenvectors at the connection point and Ki is the corresponding stiff-

ness matrix. Subtracting equation (3) from equation (2) produces the residual flexibility matrix,

G_ c - m= Gcc-Gcc (4)

This approach is difficult to implement the way it was derived. MacNeal only makes use of the residual

stiffness and neglects the mass and damping terms.

Rubin 4 starts with the same statics approximation as MacNeal, but formulates the residual flexi-

bility in a different way. The statics approximation for a discrete system is written as,



U_I)= G F , (5)

where U_.)_I is the displacement matrix of the flexible body, F is the external force vector, and G is the

flexibility matrix of the free body.

The flexibility matrix is defined as the inverse of the stiffness matrix, G = K -1. For the uncon-

strained case, the stiffness matrix is singular and G cannot be computed directly. For the constrained

case, Gc can be calculated from Kc (constrained stiffness), Gc = Kc 1. G and Gc differ by the rigid-body

inertia forces of the system. When the system is unconstrained, the system has elastic and rigid-body

movement. The rigid-body movement of the system has inertia forces associated with its mass. When

the system is constrained, the elastic motion of the system is present but the rigid-body movement is

missing. A way to incorporate the free-body inertia into Gc is needed to produce an equivalent unre-

strained flexibility matrix. Rubin writes the displacement of the physical coordinates due to generalized
rigid-body displacements as,

UR=ORQR , (6)

with the differential equation relating the generalized rigid-body displacements to the external forces
being,

MRQR=OTF , (7)

where M R = dpTMfbR is the rigid-body generalized mass, and M is the physical mass matrix. The sum

of the external forces, F, and the inertia forces, Fi, can be expressed as,

where

F+F i= F-M(_] R= AF , (8)

A = I-MdPRMRldP T

The constrained equation for the first-order statics approximation for a discrete system, where Gc

is the constrained-body flexibility matrix, is stated as,

U_ 1)= G c(F + Fi) = G cAF (9)

Rubin further explains that this is an unusual statics problem where the flexibility matrix Gc is singular

and, in general, nonsymmetric.

By adding certain generalized rigid-body displacements, QR, to the constrained deflection given

in equation (9), the first-order flexible-body displacements can be written as,

_1 _1)+ (I)R 'U )= U QR (10)



Defining the U(R1) in a way that it is orthogonal to the rigid-body modes (i.e., removing any rigid-body

contributions) gives,

oTM[u_I)+ORQR]=O (11)

Solving for QR, substituting into equation (10), and using the relationship M R = OTRMOR, the free-

body symmetric flexibility matrix, G, for the first-order approximation is,

U_I)= GF , (12)

where

G = ATGcA ,

and A is given in equation (8). Note that G is singular since Gc is singular.

The second-order statics approximation is obtained by including the inertial and damping forces

of the first-order deflections in equation (9),

U)2'= GcAIF-M (].(fl)-cO(fl)F] ,

and in a similar way removing the rigid-body contributions,

U_2)= GF-H P-B1 _ ,

where

H = GMG ,

B = GCG,

where H and B are the inertial and damping coefficient matrices, respectively. Note that the inertial and

damping coefficients are calculated from pre- and postmultiplication of G found from the first-order

approximation. In addition, H and B are symmetric since G, M, and C are symmetric.

At this point, the approximate deflection for the entire flexible body for first and second orders

are given by equations (12) and (14), respectively. By removing the retained modes (measured modes)

in the above equations, the residuals are obtained.

The residuals for the first-order static equation are,

(13)

(14)

U(O GpF (15)fp =

10



where
-1 T

Gp=G-G N , GN=ONKN_ N ,

and the mode shape and generalized stiffness matrices of the retained modes are CN and KN, respec-

tively. Similarly, the second-order formulation is expanded from the first-order statics equation by

including correction terms,

where

U(2) _ GpF-HpF-BpF" (16)fp--

Hp=H-H N , H N=GNMG N ,

Bp=B-B N , B N=GNCG N .

Gp is given in equation (15), H and B are given in equation (14). In addition, by making use of modal

orthogonality, the residual mass and damping can be computed by pre- and postmultiplying the full mass

and damping matrices, respectively,

Hp = GpMGp , (17)

Bp= GpCGp (18)

One now has the equations to compute the residual flexibility (stiffness), residual mass, and

residual damping terms for a mathematical model of a structure. Note: Martinez 6 restated the equations
to determine the residual terms in a form which is similar to the Craig-Bampton formulation. 12 The

Craig-Bampton formulation is used widely in loads analysis.

III. RESIDUAL FLEXIBILITY MODAL TEST APPROACH

Modal testing of a structure is required for correlation of a mathematical model of the structure.
A mathematical model correlated to a free-free modal test is not accurate enough to predict the con-

strained mode shapes, as discussed in reference 7. The model must also be correlated to at least the

residual flexibility terms, which in this study represents the flexibility around the interface points. In this

procedure, the determinations of the test-generated Hpa, Bt_, and Gpa, the residual mass, damping, and

flexibility, respectively, are used for comparison to the mathematical model's residual terms found in

equations (15) and (16).

The residual flexibility modal test consists of fh'st measuring the free-free modes in the fre-

quency range of interest. This includes the rigid-body modes (in the analysis, the mathematical model's

rigid-body modes can be used if the total mass and its distribution in the model are relatively accurate).

The measured free-free modes are used to correlate the global modes of the mathematical model which

can be performed at a later time. The structure is then excited at the points where it interfaces with its

environment (boundary or interface DOF).

11



Exciting eachinterfacepointindividually, theresponsedueto theexcitationis measuredat the
samelocationandin thesamedirectionastheexcitation,producingadrive point FRF.Modal parame-
ters(modeshapesandnaturalfrequencies)arethenextractedfrom theFPFobtainedfrom thefree-free
modaltest.Fromthemodalparameters,synthesizedFRF'saregeneratedandthensubtractedfrom the
correspondingdrivepoint testFRF's.Theremainingfunctionsarecalledtheresidualfunctions.The
residualflexibility termis definedasthevalueof theresidualfunctionevaluatedat zerofrequency
(constanttermin thecurvefit equationwhich will be discussed in detail later). The residual mass is the

curvature of the residual function (second-order term in the curve fit equation) in the displacement/force

domain. Finally, the residual damping (first-order term in the curve fit equation) is equated to the

damping obtained from the modal test. The residual terms are then compared to the corresponding theo-
retical residual terms. The mathematical model is modified to match the test results. Once the mathemat-

ical model is correlated to the free-free mode shapes and the residual terms, it can be used to predict the

constrained mode shapes. 7

In this derivation, the residual terms will be extracted from the FRF in the displacement/force

domain instead of the usual acceleration/force domain. Using the displacement/force domain allows

easier recognition of the characteristics of the residual function and the residual flexibility term.

Ya, the FRF matrix is represented in the form,

U_(co) = Ya(O))F_(o)) (19)

The elements of the main diagonal of Ya(a_) are the drive point FRF's at each interface point and direc-

tion. One column of Ya(og) is the result of exciting one interface point and measuring the response at

that point and all the other interface points and directions. Ya(co) can be thought of as a three-dimen-

sional matrix with two dimensions of the matrix defining the location and direction of a particular FRF.

The third dimension along the a_axis represents the actual values of the FRF's. The FRF's are only

measured in the frequency range of interest. The unmeasured range will produce the residual function.

The technique for obtaining the response functions is left up to the test engineer. Care must be

taken to accurately measure the first antiresonance of the response function. An accurate determination

of the first antiresonance is the governing factor in determining the residual flexibility term. The first
antiresonance is the lowest in frequency distinguishable characteristic of the FRF and, since the residual

flexibility term is evaluated at zero frequency of the residual function, any shift in the first antiresonance

significantly affects the residual flexibility term.

The modal parameters are extracted from the FRF's producing retained natural frequencies and

mode shapes. These natural frequencies and mode shapes together with the rigid-body modes are sub-

tracted from the corresponding FRF to produce the residual function coefficients, Ym(o)),

Ypa(O)) = Ya(O))-ORaYROTa-ONaYNOTa , (20)

where *,_,_ and di)Na are the rigid-body and retained free-free modes, respectively, and,

YR - - --_ MR 1

12



=A; M;1,

A N = -g_o2+i2_nOogOn+CO 2 .

YR ancl YN are the modal dynamic flexibility matrices for classically damped modes. The rigid-body

mass and retained elastic-body modal mass, MR and MN, respectively, are identity matrices if the modes

are initially normalized to modal mass.

Once the residual function is determined, the residual terms (flexibility, mass, and damping) are

extracted. A second-order form, similar to equation (16), is used to estimate the residual function,

Ypa( (_O)= o)2 H pa-i OkBpa + G pa (21)

AS can be seen, the residual function Y_(co) is a complex number, and the real and imaginary com-

ponents can be separated. Ypa(ro) is in the form,

Ypa(CO) = a+bi , (22)

where

a = Real (Ypa(Og)) , b = Imag (Yp_(_)) .

Equating equations (21) and (22) gives,

a+bi = (go2H pa+G pa)-i roB pa

Equating the imaginary components, the residual damping term is found to be,

b
B pa =- --_

The residual mass and flexibility are determined by equating the real components,

a = Gpa+ (.02Hpa

Rewriting equation (25) in matrix form gives,

where

1

1
A=

1

a = AX ,

"2'

04

0,2
, X= Hp a

(23)

(24)

(25)

(26)

13



andN is the total number of data points. Solving for X gives,

X = A-la ,

the residual flexibility and the residual mass. Since A is not square, other solution methods must be

implemented, such as the pseudoinverse to determine the unknowns, Gpa and Hpa. These values are

compared to the residual terms calculated from the mathematical model for correlation purposes.

(27)

IV. LEAST-SQUARES CURVE FIT OF RESIDUAL FUNCTION

The determination of the residual terms (residual mass and flexibility) from the residual function

requires a second-order polynomial curve fit of equation (25). The imaginary term has previously been

determined, equation (24), and is not included in the curve fit. If the subtraction of the synthesized FRF

from the test (measured) FRF was clean (i.e., no ragged data regions), a direct curve fit could be
accomplished for equation (27). But due to the errors in the synthesized FRF, the resulting residual

function has regions of ragged data (fig. 6). The errors in the synthesized FRF are attributed to the limi-

tation in the evaluation of the modal parameters from the test FRF's.
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Figure 6. Test-generated residual function.

I

11_ 2go

A theoretical residual function in the displacement/force domain (fig. 7) has the characteristics of

a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency

range. These are the characteristics of a second-order equation with only the constant and second power

terms (equation (25)). Using these characteristics, a weighted curve fit of the residual function could be

used to eliminate the ragged data. A method of determining the weighting function for the curve fit that

eliminates any guess work from the analyst is required.

14
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As stated previously, the residual function is relatively flat at the lower frequencies, i.e., the

difference (variance) between adjacent data points is small. In the regions of ragged data, the variance

between adjacent data is large. When the variance is large between data points, its influence on the curve
fit should be minimized. In addition, the data point pairs with small variance should have their influence

increased. Since a large variance requires small influence and small variance requires large influence,
the inverse of the variance is used to eliminate the regions of ragged data. By taking the inverse of the

variance of adjacent data points, a weighting function W, is generated,

1 _ n-1

W(J)-s2(j) j+int(_) (28)

where

j=int(n_2) , int(n_2)+ l , N-int(-_ -)__ _ .,. , ,

and s2(j) is the variance, 13 N is the total number of data points, n is the number of adjacent data points

for which the variance is calculated, x is the mean of the n adjacent data points for each j, and int(#) is

the integer part of # (i.e., int(1.5) = 1).

Forming W into a square matrix is accomplished by setting the main diagonal equal to the

weighting function and all other terms equal to zero. The square matrix W must be NxN in size. When

calculating the weighting function, the first and last few data points, depending on the value of n chosen,

15



will not havea weightingvalueassigned.Forcinga valueof zeroat thesepointswill makeW be NxN.

This can be justified due to the fact that at the extreme limits, data acquisition equipment is not as accu-
rate as in the middle range of the equipment, and the test generated residual function is not as accurate
there either. Eliminating these points will have little influence on the curve fit. This is demonstrated in

the study on the beam in the following sections with exaggerated data point elimination. In addition,

only the weighting values of about two or four data points will be set equal to zero compared to about
250 total data points.

Premultiplying both sides of equation (26) by the weighting function matrix gives,

Wa = WAX. (29)

Multiplying both sides by A T and solving Ik_rX yields,

X = (A TWA)-IA T Wa (30)

Since ATWA is a square matrix, the inverse can be computed directly. In this form, there is no need to

normalize the weighting function. The residual terms (residual mass and flexibility), which are contained
in X, can be used to correlate the mathematical model.

V. APPLICATION TO BEAM WITH APPENDAGE

One of the simplest structures to model is a straight beam. A theoretical solution for the natural

frequencies and mode shapes of an unrestrained (free-free) uniform beam is available. 14 The natural fre-
quencies are given by,

,,;[2 (ei/½
- 2zrL 2 tin) ; i= 1,2,3 ..... (31)

where

]t.1.2.3.4.5 = 4.73004074, 7.85320462, 10.9956078, 14.1371655, 17.2787597 ,

2i=(2i+1) 2-- , i_>6 ,

and the mode shapes are given by,

Yi (_) = cosh -_ + cos -_ - o'i(sinh _-_ + sin _)

where

(32)

0"1,2,3,4, 5 = 0.982502215, 1.000777312, 0.999966450, 1.000001450, 0.999999937 ,

rri:l.0 ; i>6.
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With the"exact" answeravailable,themathematicalmodel'selasticmodescanbecorrelated.Oncethe
modelis correlated,themodelis saidto beexact.Table1showsthefrequencydifferencelessthanone-
half percentandmodalassurancecriteria(MAC) valuesof 1.00.TheMAC is anaveragedvaluefor the
comparisonof themodeshapesin therangefrom zeroto one.A valueof oneindicatesahigh degreeof
similarity betweenmodeshapes.

Table1. Correlationof beammodelandtheoreticalsolution.

Mode Test Model Difference Difference
Number Frequency(Hz) Frequency(Hz) (Hz) (Percent) MAC

1 9.9764 9.9740 0.024 0.02 1.00
2 27.4715 27.493 -0.0215 0.07 1.00

3 53.8007 53.899 -0.0983 0.18 1.00

4 88.8484 89.097 -0.2486 0.27 1.00

5 132.6023 133.096 -0.4937 0.37 1.00

6 185.0520 185.895 -0.8448 0.45 1.00

Thecorrelatedmodelcanbeusedasabaselinefor methodology,programdevelopment,andtest
methodevaluation.

For this study,thebeamstructurewasmodifiedby attachingatrunnionsimulatorto oneend(fig.
8). Thetrunnionsimulatorwasabrassrodwith two aluminumplatesattachedonbothends.Theplates
wereusedto connectthebrassrod to thebeamandto attachthetestinginstruments.Thetrunnionsimu-
latorgivesthebeamadistinct stiffnesschangefrom thefree-freebeam.Themassof thetrunnionsimu-
lator is smallrelativeto themassof thebeamanddoesnotaffectcorrelationto thesolutionof thetheo-
reticaluniform free-freebeam.

Thefree-freemodaltesthardwaresetupconsistsof a HewlettPackard3562for dataacquisition.
TheaccelerometerutilizedduringthemodeltestwasaPCBPiezotronics303A accelerometer.Thesys-
temwasexcitedwith an impacthammerutilizing aPCBPiezotronics208A03loadcell. Oncethe
measurementswereacquired,theywereportedto a HewlettPackard9000/750workstationrunning
LeuvenMeasurementSystems(LMS) MODAL TM package for modal parameter estimation. For ease of
testing, the accelerometer was fixed at the interface point and the excitation hammer was moved.

Initially, the beam was tested in a free-free configuration (fig. 9), and the elastic modes were

compared to the mathematical model. Table 2 shows the percentage difference between natural fre-

quencies and the MAC values. The measurements and the modal parameter estimation (natural frequen-

cies and mode shapes) of the free-free modal test are verified by the results in table 2.

By exciting the test structure at the point where it interfaces with its environment (the end of the

brass rod) and measuring the response at the same location, a drive point FRF in the displacement

domain was obtained (fig. 10). The modal parameters were computed for the first six natural frequen-

cies, and a synthesized response function was generated (fig. 1 I). The first six natural frequencies in the

maximum frequency range of 0 to 200 Hz were chosen arbitrarily.
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Table 2. Comparison of beam model and test data.

Mode
Number

Test

Frequency (Hz)

Model

Frequency (Hz)

1 9.9888 9.9764

2 27.4918 27.4715

3 53.8265 53.8007

88.93384 88.8484

5 132.5651 132.6023

6 184.7864 185.0520

Difference

(Hz)
Difference

(Percent) MAC

0.0124 0.12 1.00

0.0203 0.07 1.00

0.0258 0.04 1.00

0.0854 0.09 1.00

-0.0372 0.02 1.00

-0.2656 0.14 1.00

For visual comparison, the drive point and synthesized FRF's have been plotted together in
figure 12. The frequency range has been extended to show the relationship between the measured fre-

quencies and the first bending frequency of the trunnion, which occurs at 289 Hz. In an actual test,
ever o,_ ythin= above the cutoff frequency would be unmeasured. The unmeasured region of the FRF is

responsible for the residual curve. The subtraction of the test and synthesized response functions produc-
ing the residual function can be seen in figure 13. The characteristics of the theoretical residual function

are apparent, but with regions of ragged data produced by modal parameter estimations.

A direct curve fit of the residual function was made (fig. 14). The curve fit did not converge on
the underlying second-order characteristic curve. Figure 14 was plotted with a linear vertical axis since

the value of the curve becomes negative around 150 Hz and the characteristics of the second-order fit

can be seen. The ragged data are orders of magnitude higher than the underlying second-order character-

istic curve, which throws off the curve fit. By stepping through the data points, a weighting value

(inverse of variance) with respect to the neighboring data points can be calculated (equation (28)). The
neighboring data points were initially examined in sets of three. It can be seen in figure 15, which con-
tains the weighting and residual functions, that the weighting function has low values where the residual

function has regions of ragged data. Another curve fit was performed using the statistically generated
weighting function (equation (30)) with highly accurate results(fig. 16).

The exact answers were obtained by equation (16). The same values can be obtained by follow-

ing the test procedure in generating the residual function. The drive-point FRF is generated by using the
elastic modes of the model. Figure 17 shows the residual function generated from the mathematical

model. The residual values of 1.6045e-5 for flexibility and 5.7540e-12 for mass were compared to the

exact answer (mathematical model) and found to have 0.81- and 18.44-percent error, respectively. It has
been determined from the research task being performed by MSFC/NASA that the residual mass and

damping terms can be neglected in the correlation of the mathematical model, which is used to predict
constrained natural frequencies and mode shapes. However, the residual mass term is important in the

curve fitting process due to the curvature of the residual function. To verify the process, additional

weighting functions and curve fits were performed by varying parameters. The number of adjacent data

points was changed to two and four along with the range of the data points for which the weighting
functions were computed and applied (table 3).

By varying the upper and lower frequency ranges, an evaluation of the effects of excluding data

points in the curve fit process is examined. The changes in the percent error of the frequency range
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Table3. Residualflexibility curvefitting errorsfor beam.

Lower
Frequency

Exact

Upper
Frequency 2 Points

1.6165e-5

Percent
Error

0.00

3 Points

1.6165e-5

Percent
Error

0.00

4 Points

1.6165e-5

Percent
Error

0.00

0 200 1.5761e-5 2.52 1.6035e-5 0.81 1.5833e-5 2.06

30 200 1.5757e-5 2.53 1.6035e-5 0.80 1.5835e-5 2.04

60 200 1.5771e-5 2.44 1.6225e-5 0.37 1.5865e-5 1.86

0 180 1.5758e-5 2.52 1.6066e-5 0.61 1.5888e-5 1.71

30 180 1.5758e-5 2.52 1.6067e-5 0.60 1.5890e-5 1.70

60 180 1.5772e-5 2.43 1.6268e-5 0.64 1.5923e-5 1.50

variationin table3 is insignificant.Thecomparisonof theutilizationof two, three,andfour consecutive
datapointsto generatetheweightingfunctionshowsasmallchangewith threepointsproducingthebest
results.

The largererror in thetwo- andfour-pointevaluationcanbeattributedto thedistributionof the
datapoint of thecurve.Forinstance,if twoconsecutivedatapointsstraddlea peak(definethepeak)at
equalheights,their variancemaybelow but theiroverallmagnitudeisgreaterthanthecharacteristic
curve.A high weightingvaluewouldbeassignedthatwouldproduceanincorrectcurvefit (i.e., residual
flexibility value).

After thetestmodeshapesandnaturalfrequencieshavebeenobtained,thedatamanipulation
wasperformedby programswritten in MATLAB TM by The MathWorks. The program MK-Phi-FRF.m

takes the mathematical model's mass and stiffness matrices and generates the natural frequencies, mode

shapes, and appropriate drive-point FRF for the response function approach. MK-Phi-FRF.m sets up the

input parameters for the program rbfcfv.m. The program rbfcfv.m, which utilizes the response function

approach, computes the residual function from the drive-point FRF and generated elastic and rigid-body
response functions. A weighting function is generated and applied to the curve fit of the residual func-

tion, producing the residual terms. The program res.m uses the matrix approach to generate the residual

terms from a mathematical model. The programs MK-Ph-FRF.m, rbfcfv.m, and res.m can be found in

the appendices. Each program is documented and has the appropriate equation reference.

VI. APPLICATION TO PALLET SIMULATOR

Once the method and programs have been verified on a simple structure (beam) with a known

exact (theoretical) answer, the implementation on a more complex structure is to be performed. A frame

structure (fig. 18) has been designed and built to simulate a space shuttle cargo pallet. The fundamental

mode distribution and trunnion modes of the frame structure are similar to a space shuttle cargo pallet.

A theoretical "exact" solution is not available for the pallet simulator. To obtain the closest
model representation to the physical structure, the mathematical model (FEM) is to be correlated to the

elastic modes obtained from the modal test data. All the elastic modes up to the first bending mode of
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the trunnions are to be correlated. In an actual test, only a subset of the elastic modes (up to a prechosen

cutoff frequency) would be used in the correlation. In this analysis, the first eight natural frequencies are
used in the determination of the residual values. Since the mathematical model is correlated through the

14 elastic modes, the use of the model to predict the residual terms of the first eight modes can be

accomplished with confidence.

The free-free modal test hardware setup consists of a Hewlett Packard 9000/750 workstation

with a Hewlett Packard 3565S frontend for data acquisition (fig. 19). The accelerometers utilized during
the modal test were PCB Piezotronics STRUCTCEL TM accelerometers. LMS software was employed,

with their FMON TM package for data acquisition and the MODAL TM package for modal parameter
estimation.

The pallet simulator was suspended by bungy cords in a free-free environment. The modal test

was conducted using random vibration shaker excitation in the three translational directions in sequence

(fig. 20). The mathematical model was then correlated to the first 14 elastic natural frequencies and

mode shapes. The results of the correlation are found in table 4. With a frequency difference less than

1 percent and MAC values of 1.00, an "exact" mathematical model is said to be obtained.

The drive-point FRF's are to be measured at the points where the structure would connect
(interface) with its environment (end of the trunnions). A hammer impact excitation was used to excite

the structure with a data acquisition frequency range up to 100 Hz. If the shaker was attached to the end

of the trunnion, mass and stiffness loading would occur due to the size of the trunnion and would impose

additional uncertainties in the data. The response function at the other interface points was acquired for

each drive-point excitation with a total of 144 FRF's obtained.

Examining one of the drive-point FRF's, modal parameters (mode shapes and natural frequen-

cies) were extracted for the first eight elastic modes. Using these eight modes, a synthesized FRF was

generated. The synthesized and the drive-point FRF's are plotted together (fig. 21) for visual compari-

son. The frequency range in figure 21 has been extended to show their relationship. Subtracting the

synthesized FRF from the drive-point FRF, the residual function was generated (fig. 22). It can be seen
that a direct curve fit of the residual function would cause extreme divergence as in the beam's residual

function curve fit.

A weighting function was generated using three consecutive data points (fig. 23). Applying the

weighted curve fit to the residual function, the residual flexibility and residual mass are found to be

7.6738e-6 and 5.6104-12, respectively (fig. 24). The residual terms from the "exact" mathematical

model were computed and compared to the test-generated residual terms with test errors of 2.50- and

1.36-percent for flexibility and mass, respectively. The number of consecutive data points and the

frequency range for weighting function generation were changed to verify the curve fitting process

(table 5). Similar variation in the percent error was observed as in the beam results.
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Table 4. Correlation results for pallet simulator.

Mode Test Model Difference Difference

Number Frequency (Hz) Frequency (Hz) (Hz) (Percent) MAC

1 16.5620 16.5274 -0.0346 0.21 1.00

2 21.2079 21.3203 0.1124 0.53 1.00

3 46.4941 46.1600 -0.3341 0.72 1.00

4 51.3995 51.5989 0.1994 0.39 1.00

5 75.7266 75.3772 -0.3494 0.46 1.00

6 83.7987 84.4266 0.6279 0.75 1.00

7 96.7800 96.1199 -0.6601 0.68 1.00

8 98.6837 98.4312 -0.2525 0.26 1.00

9 105.7185 106.0403 0.3218 0.30 1.00

10 112.8742 113.1375 0.2633 0.23 1.00

11 135.6785 136.2627 0.5842 0.43 1.00

12 136.6981 137.9833 1.2852 0.94 1.00

13 138.6954 139.4763 0.7809 0.56 1.00

14 167.3594 167.7916 0.4322 0.26 1.00

Table 5. Curve fitting errors of pallet simulator residual flexibility.

Lower Upper Percent Percent Percent

Frequency Frequency 2 Points Error 3 Points Error 4 Points Error

Exact 7.8707e-6 7.8707e-6 7.8707e-6

0 100 7.5776e-6 3.72 7.6738e-6 2.50 7.6923e-6 2.27

20 100 7.6056e-6 3.37 7.6842e-6 2.37 7.7037e-6 2.12

40 100 7.8214e-6 0.63 7.9305e-6 0.76 7.9457e-6 0.95

0 90 7.2536e-6 7.84 7.5488e-6 4.09 7.5553e-6 4.01

20 90 7.3175e-6 7.03 7.5658e-6 3.87 7.5764e-6 3.74

40 90 7.7639e-6 1.36 7.9176e-6 0.60 7.9368e-6 0.84
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VII. CONCLUSION

An applicable least-squares curve fitting procedure using a statistically generated weighting

function has been developed. This curve fitting procedure enables the accurate curve fitting of test-

generated residual functions that contain regions of ragged data. The ragged data is the result of the

inability to accurately evaluate the modal parameters from the FRF during the modal testing process.
Programs for calculating the residual terms from modal test data and a mathematical model (FEM) have

been written in MATLAB TM. The curve fit of the drive-point residual function for a beam with a

trunnion type interface, retaining the first six elastic modes, produced residual flexibility values with

errors in the 0.4- to 2.5-percent range. The errors were determined by comparing the residual terms of

the test data to the residual terms generated from a mathematical model which was correlated to the
exact theoretical solution.

The curve fitting process was also applied to a frame structure that simulates a space shuttle

cargo pallet, which is more complex than a straight beam. The residual flexibility values for the pallet

simulator, retaining the first eight elastic modes, were found to be in the 0.6- to 4.0-percent range. A

theoretical solution is not available for the frame structure. The "exact" answer was generated by corre-

lating the mathematical model to all the elastic natural frequencies and mode shapes up to the first

bending mode of the trunnion (i.e., 14 elastic modes).

The development of the weighted curve fit of the residual function has made possible further

investigation of the residual flexibility modal testing technique. Additional studies are needed in the area

of modal parameter estimation, since this is the cause of the ragged data in the residual function. The

next step, which is also under investigation, is how to use the residual flexibility to accurately correlate a
mathematical model.
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APPENDIX A

PROGRAM MK-Phi-FRF.m

The program MK__PhL_FRF.m takes the mathematical model's mass and stiffness matrices and

generates the natural frequencies, modes shapes, and the appropriate drive-point frequency response

function for the response function approach. MK..Phi_FRF.m sets up the input parameters for the pro-

gram rbfcfv.m for the mathematical model data. The input parameters are set up to run the beam prob-
lem.

% PROGRAM MK'Phi'FRF.m

%

% This program computs from the Mass and Stiffness matrices

% of a FEM program, the eigenvalues and eigenvectors. It then

% computes the Frequency Resopnce Function for a specified

% responce point and excitation point. The frequencies and

% mode shapes are split up into rigid body and elastic

% components.

%

% Note: The mass & stiff, matrices must be stored in matlab

% format with the matrices names as "M" & "K"

% respectivily.

clear

echo off

prename=input('Enter PreName? ','s');

% Set Flag for following generating FRF corresponding to

% 0-Full, 1-Elastic, 2-Rigid Body, 3-No FRF

Flag=0;

j=26;

k=26;

nrbm=6;

nrem=6;

xdofs=[27] ;

StFreq=0.0;

step=0.78125;

dim=512;

% drive coordinate

% responce coordinate

% number of rigid body modes

% number of elastic modes

% DOF to exclude from analysis

% start freqency in Hz.

% delta-f, freqency step in Hz.

% size of frf to be generated

eval(['load ',prename,'.MK.mat']);

[m,m]=size(M);

FRF=zeros(l,dim)';
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f=linspace(StFreq,dim*step,dim)';

f=f(l:dim);

Rad=f*(2*pi);

compute mode shape and frequencies

disp(' Computing Eigenvalues and Eigenvectors')

[Phi,w,Freq,GM]=EignSol2(M,K);

separate elastic and rigid body modes

disp(' Separate Elastic and Rigid Body Modes')

Phi(xdofs, :)=[];

Phie=Phi(:,nrbm+l:nrbm+nrem);

Phirb=Phi(:,l:nrbm);

Freqe=Freq(nrbm+l:nrbm+nrem);

Freqrb=Freq(l:nrbm);

save modal parameters

eval(['save ', [prename,

eval(['save ', [prename,

'.Elas.mat'],

'.RB.mat'],'

' Freqe Phie']);

Freqrb Phirb']);

% Generate Full FRF

if Flag==0

disp(' Proccessing Full FRF')

Lambda=zeros(dim,m-l);

Phi2=Phi(j,:).*Phi(k,:);

Rad2=Rad.^2;

r=l;

while r<=m-I

FRF=FRF+(Phi2(r)./(Freq(r)^2-Rad2));

r=r+l;

end

end

Generate Elastic FRF

if Flag==l

disp(' Proccessing Elastic FRF')

Lambda=zeros(dim,nrem);

Phi2=Phie(j,:).*Phie(k,:);

i=l;

r=l;

while r<=nrem

while i<=dim;

Lambda(i,r)=(Phi2(r)/(Freqe(r)^2-Rad(i)^2));

i=i+l;

end

i=l;

FRF(:)=FRF(:)+Lambda(:,r);

r=r+l;

end

end

% Generate Rigid Body FRF

if Flag==2
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disp(' Proccessing Rigid Body FRF')

xf=zeros(dim,nrbm);

Phi2=Phirb(j,:).*Phirb(k,:);

i=l;

r=l;

while r<=nrbm

while i<=dim;

Lambda(i,r)=(Phi2(r)/(Freqrb(r)^2-Rad(i)^2));

i=i+l;

end

i=l;

FRF(:)=FRF(:)+Lambda(:,r);

r=r+l;

end

end

% save FRF in (displacement/f) format

eval(['save ', [prename,' ',int2str(j),'.',int2str(k),

'.FRF.mat'],' FRF']);

disp(' FRF Saved in x/f format')

% plot FRF

semilogy(f,abs(FRF))

title(['Filename ',prename,': Drive',num2str(j) ....

' - Response',num2str(k)])

xlabel('Freq')

ylabel('X/F')

% DISCRIPTION OF TERMS

% j drive point DOF

% k response point DOF

% nrbm number of rigid body modes

% nrem number of elastic modes

% xdofs DOFS to exclude from the analysis

% StFreq frequency for the FRF to start

% step frequency step (resolution) in Hz.

% dim dimension of the FRF (size)

% FRF vector containing the FRF

% f frequency values in Hz.

% tad frequency values in radians

% M mass matrix

% K stiffness matrix

% Phi eigenvectors

% Freq eigenvalues in radians

% w eigenvalues in radians on main diagonal

% GM generalized mass

% Phie,Phirb elastic and rigid body eigenvectors

% Freqe,Freqrb elastic and rigid body eigenvalues

43





APPENDIX B

PROGRAM rbf.m

The program rbfcfv.m, which utilizes the response function approach, computes the residual

function from the drive-point FRF and generated elastic and rigid-body response functions. A weighting

function is generated and applied to the curve fit of the residual function producing the residual terms.

The input parameters are set up to run the beam problem.

% PROGRAM rbf.m

%

% Computes the Residual Function and performs a weighted least

% square curve fit of the Residual Function.

clear

echo off

i=sqrt(-l);

% Required input

j=26; % drive point DOF

k=26; % response point DOF

HzStep=0.78125; % squared resolution (Delta Hz)

n=512; % number of data points

HzStFreq=0.78125; % start frequency in Hertz

dptl=100; % lower data pt to consider in curve fit

dptu=256; % upper data pt to consider in curve fit

% dptl & dptu for _exibility of range

% in curve _t

num'sample=3; % # of data samples to use in forming weighting

% function (range 2-6).Note: if 5 or 6 change

% w(r+l,r+l)= to w(r÷2,r+2)=

% Load Data from MATLAB Format Files

% prename.Elas.mat contains Free-Free Frequencies and Modes

% ("Freqe, Phie")

% prename. FRF.mat contains Test FRF("FRF")

% prename. RB.mat contains Rigid Body Frequencies and Modes

% ("Freqrb, Phirb")

prename=input('Enter PreName? ','s');

eval(['load ',prename,'.Elas.mat']);

eval(['load ',prename,'.FRF.mat']);

eva!(['load ',prename,'.RB.mat']);

........ :,L;?
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% Setup Parameters and Initialize Matrices

[tmp,nrem]=size(Phie);

[tmp,nrbm]=size(Phirb);

Hz=linspace(HzStFreq,n*HzStep,n)';

Hz=Hz(l:n);

RadSqd=(Hz.*(2*pi)).^2;

FRF=FRF(2:n+I);

FRFe=zeros(l,n)';

FRFrb=zeros(l,n)';

w=zeros(n,n);

xx=zeros(2,1);

Synthesize Elastic Mode FRF, from Equ. 3.2

disp(' Synthesize Elastic Mode FRF')

Phie2=Phie(j,:).*Phie(k, :);

r=l;

while r<=nrem

FRFe=FRFe+(Phie2(r)./(Freqe(r)^2.-RadSqd));

r=r+l;

end

% Generate Rigid Body FRF, from Equ. 3.2

disp(' Generate Rigid Body FRF')

Phirb2=Phirb(j,:).*Phirb(k,:);

r=l;

while r<=nrbm

FRFrb=FRFrb+(Phirb2(r)./(Freqrb(r)^2.-RadSqd));

r=r+l;

end

% Subtract Ridged Body and Elastic FRFs from Test FRF,

% from Equ. 3.2

retFRF=(FRFrb)÷(FRFe);

ResFRF=((FRF)+(retFRF));

% Computing Weighting Function, Equ. 4.1

disp(' Computing Weighting Function')

b=abs(ResFRF);

r=dptl;

while r<=dptu-(num'sample-l)

w(r+l,r+l)=I/(std(b(r:r+(num'sample-l))))^2;

if w(r+l,r+l) == Inf

disp(' *** Variance = 0.0 Substituting 1.0e+10 ***')

w(r+l,r+l)=l.0e_10; %value may need to be changed to _t mean
end

r=r+l;

end

% Normalize Weighting Function

w=w./max(max(w));

% Forming "A" matrix, from Equ. 3.8
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A=RadSqd;

A(:,2)=ones(n,l);

% Solving for Unknowns, from Equ. 4.3

disp(' Solving for Unknowns')

xx=(A'*w*A)\(A'*w*b);

Gr=xx(2,1);

Hr=xx(l,l);

% Computing Curve Fit, from Equ. 3.8

disp(' Computing Curve Fit')

c_t=A*xx;

% Saving Residual Terms and FRF

eval(['save ', [prename,'.Res.mat'],' Gr Hr ResFRF']);

% Plot Residual FRFs

semilogy(Hz,abs(ResFRF),'r-',Hz,abs(retFRF),'g-',...

Hz,abs(FRF),'w:')

title('Frequency Response Functions for Residual Flexibility')

xlabel('Frequency (Hz)')

ylabel('Displacement (x/f)')

legend('Residual Function','Synthesized','Measured');

%print

disp(' ** Screen is PAUSED. Enter or Return to continue **')

pause

% Plot Curve Fit ant Etc.

semilogy(Hz,abs(b),Hz,abs(c_t),Hz,abs(diag(w)))

title('Difference FRF & Curve Fit')

xlabel('Frequency (Hz)')

ylabel('Displacement (x/f)')

legend('Residua! Function','Curve Fit','Weighting Function');

ResTerms=...

sprintf('kn Residual Terms\n

disp(ResTerms);

Gr = %10.8e\n Hr = %10.8e',Gr,Hr);

% DESCRIPTION OF TERMS

% A

% c_t

% FRF

% FRFe

% FRFrb

% Gr,Hr

% Hz

% nrem

% nrbm

% Phie,Freqe

% Phie2

% Phirb,Freqrb

% Phird2

% RadSqd

matrix of coef_cients of the unknowns

curve _t of residual function

test frequency response function

synthesized FRF from elastic modes

synthesized FRF from rigid coef_cient modes

residual Hexibility and residual mass

vector of frequencies in hertz for plotting

number of retained elastic modes

number of rigid body modes

elastic modal properties

the square of each term in Phie

rigid body modal properties

the square of each term in Phirb

vector of frequencies in radians, terms squared
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% ResFRF

% retFRF

% w

% xx

residual function

synthesized FRF of retained modal parameters

matrix with weighting function on main diagonal

contains residual mass and _exibility
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APPENDIX C

PROGRAM res.m

The program res.m uses Rubin's matrix approach to generate the residual terms from a mathe-
matical model. This program also computes the constrained natural frequencies and mode shapes from a

subset of free-free modes and drive-point residual flexibilities. 7 The input parameters are set up to run

the beam problem.

%

%

%

%

%

%

%

%

%

%

PROGRAM res.m

This program computes the residuals and the constrained mode

shapes generated from the residual _exibility.

See discription of terms at end of program.

clear

echo off

input data

prename=input('Enter PreName? ','s');

iDof=[26];

ConDof=[26];

rm=[l 2 3 4 5 6 7 8];

nrbm=2;

eval(['load ",prename,'.MK.mat']);

reorder M&K so interface DOF's are in last Rows & Columns,

generate mode Shapes

disp(' Calculating eigenvalues and eigenvectors')

niDof=length(iDof);

nConDof=length(ConDof);

nrm=length(rm);

[n,n]=size(M);

ol=[l:n];

ol(iDof)=[];

ol(n-niDof+l:n)=iDof;

M=M(ol,ol);

K=K(ol,ol);

[Phi,w,Freq,GM]=EignSol2(M,K);

construct transfomation from constrained to free-free

assumes rigid body modes are in 5rst columns, from Equ. 2.8

Phirb=Phi(:,l:nrbm);

A=eye(n)-M*Phirb*Phirb';
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% generate constrained stiffness, constrained _exibility,

% free-free _exibility matrix, from Equ. 2.12

disp(' Generating _exiblity matrices')

Kc=K;

StConDof=n-nConDof+l;

Kc(StConDof:n,StConDof:n)=Kc(StConDo_:n,StConDof:n)+...

diag(diag(Kc(StConDof:n,StConDof:n)));

Gc=inv(Kc);

G=A'*Gc*A;

and

% generate retained _exibility matrix and

% remove from full _exibility matrix, from Equ. 2.15

disp(' Generate Retained Flexibility Matrix')

Kn=w(rm, rm).^2;

Kn=Kn(nrbm+l:nrm,nrbm+l:nrm);

Phin=Phi(:,rm);

Phin=Phin(:,nrbm+l:nrm);

Gn=(Phin/Kn)*Phin';

Gr=G-Gn;

partition mode shapes and retained _exibility

disp(' Partition Matrices')

Phiki=Phi(l:n-niDof,rm);

Phikb=Phi(n-niDof+l:n,rm);

Grib=Gr(l:n-niDof,n-niDof+l:n);

Grbb=Gr(n-niDof÷l:n,n-niDof+l:n);

% generate full residual mass and extract boundary mass terms,

% from Equ. 2.17

Hr=Gr'*M*Gr;

Hrbb=Hr(n-niDof+l:n,n-niDof+l:n);

% THE FOLLOWING IS AN IMPLEMENTATION OF THE PROCEDURE FOUND

% IN REFERENCE [7].

% generate transformation matrix

disp(' Generate Transformation Matrix')

tmp=Grib/Grbb;

[tmpm, tmpn]=size(tmp);

T=Phiki-tmp*Phikb;

[tm, tn]=size(T);

T(l:tm, tn+l:tn+tmpn)=tmp;

T(tm+l:n,l:tn)=zeros(n-tm, tn);

T(tm+l:n,tn+l:tn+tmpn)=eye(n-tmpm, tmpn);

form constrained model, solve, and convert solution to

physical coordinates

disp(' Form Constrained Model, Solve', and')

disp(' Convert to Physical Coord.')

Mb=T'*M*T;

Kb=T'*K*T;

Mnn=Mb(l:nrm, l:nrm);

Knn=Kb(l:nrm, l:nrm);
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[Phinn,wc]=EignSol(Mnn,Knn);

Phinn(nrm+l:nrm+tmpn,l:nrm)=zeros(tmpn,nrm);

Phic=T*Phinn;

% exact solution by FEM

disp(' Exact Solution by FEM')

Ke=K(l:n-nConDof,l:n-nConDof);

Me=M(l:n-nConDof,l:n-nConDof);

[Phie,we,Freqe,GMe]=EignSol2(Me,Ke);

Phie(n-nConDof+l:n,l:n-nConDof)=zeros(nConDof,n-nConDof);

% checking orthoginality

Orthog= Phie'*M*Phic;

% saving data

eval(['save ',[prename,'.res.mat'],' Grbb Hrbb Orthog..

/ascii']);

disp(' That's All Folks')

%

% niDof

% iDof

% nConDo f

%

% ConDof

% nrm

% rm

% nrbm

% M,K

% ol

% Phi

% w

% Phirb

% A

%

% Kc

% Gc

% G

% Kn, Gn

% Gr

% Phiki, Phikb

% Grib, Grbb

% T

% Mb, Kb

% Mnn, K/In

%

% Phinn

% wc

% Phic

% Me, Ke

%

% Phie

% we

% Or thog

DISCRIPTION OF TERMS

number of interface DOFs.

row or column corresponding to the interface DOF.

number of constrained DOF for determinatly

constrained model.

constrained DOF for determinatly constrained model

number of retained modes.

mode number of retained modes including r-b mode.

number rigid body modes.

mass and stiffness of full model

reorder to place interface DOF's in last col & rows

full mode shapes

frequency in matrix form of full mode]

rigid body mode shapes

transformation martix for constrained _exibility

matrix to free-free _exibility matrix

constrained stiffness matrix

constrained _exibility matrix

free-free _exibility matrix

retained stiffness and _ex. matrices

residual _exibility matrix

retained modes, interior and boundary DOF's

subset of Gr, interior and boundary DOFfs

transformation to reduce structures coordinates

reduced mass and stiffness matrices

subsets of Mb and Kb respect, obtained by setting

boundary displacements equal to zero.

constrained mode shapes in reduced coordinates

freq. in matrix form of constrained model

constrained mode shapes in full coordinates

mass and stiffness matrices for exact solution of

constrained model

exact constrained mode shapes

exact freq. in matrix form for constrained model

orthogonality of exact and constrained mode shapes
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